Hepatoprotective activity of Leucas aspera Spreng against simvastatin induced hepatotoxicity in rats

Mohd Abdul Irfan*, Mohammed Fazil Ahmed*, Syed Asad Bakhtiary* and Mohammed Ibrahim****

*Nizam Institute of Pharmacy and Research Centre, Deshmukhi, Pochampally, Near Ramoji Film City, Nalgonda-508284, A.P., India
**Asian Institute of Advance Scientific and Pharmaceutical Research, Hyderabad-500058, A.P., India

Received for publication October 9, 2012; accepted November 12, 2012

Abstract

The present study is to evaluate for hepatoprotective activity of Leucas aspera Spreng leaves extract, against simvastatin induced hepatotoxicity for 30 days. Leaves of Leucas aspera Spreng was successively extracted with ethanol against simvastatin (20 mg/kg.p.o) induced hepatotoxicity, using standard drug silymarin (20 mg/kg). There was a marked elevation of biochemical parameters such as increases in serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), alanine phosphatase (ALP), serum bilirubin and decrease the total proteins content in simvastatin treated rats, which were restored towards normalization in Leucas aspera Spreng (200 mg/kg and 400 mg/kg) treated animals. The 400 mg/kg dose of Leucas aspera Spreng shows the best results than 200 mg/kg, similar to silymarin (20 mg/kg). Histopathological observations confirmed the beneficial roles of Leucas aspera Spreng and silymarin against ethanol-induced liver injury in rats. Possible mechanism may involve their antioxidant activity.

Key words: Leucas aspera Spreng, Antioxidant activity, Ethanol, Simvastatin, Silymarin

Introduction

The liver is the main site of metabolism for drugs and other exogenous compounds. It is involved with almost all the biochemical pathways related to growth, fight against diseases, nutrient supply, energy provision and reproduction (Ward et al., 1999). The liver is expected not only to perform physiological functions but also to protect the hazards of harmful drugs and chemicals. Inspite of tremendous scientific advancement in the field of hematology in recent years, liver problems are on the rise. Jaundice and hepatitis are two major hepatic disorders that account for a high death rate (Pang et al., 1992). Presently only a few hepatoprotective drugs and those from natural sources are available for the treatment of liver disorders (Ross et al., 1996).

Drug-induced liver injury is responsible for 5% of all hospital admissions and 50% of all acute liver failures (Friedman et al., 2006 and Ostapowicz et al., 2006). Simvastatin hepatotoxicity is hypothesized to occur due to drug-drug interactions (Ricaurte et al., 2006 and Kanathur et al., 2001). Simvastatin (Lipid Lowering Agent) competitively inhibits HMG-CoA (3-hydroxy-3 methylglutaryl coenzyme A) in the formation of mevalonate. Mevalonate is also a precursor of Coenzyme Q10 (CoQ10), Thus, treatment with statins could also lower its levels. CoQ10 acts as an antioxidant, has membrane stabilising effects, and is important for cellular mitochondrial respiration, which is essential for energy production in organs (Frei et al., 1990 and Stocker et al., 1991). Thus, simvastatin causes oxidative stress, mediated hepatotoxicity by depleting antioxidant enzymes (Vaghasiya et al., 2008).

Leucas aspera Spreng (Family: Lamiaceae) commonly known as ‘Thumbai’, is distributed throughout India from the Himalayas down to Ceylon. Roots are used in the treatment of pneumonia (Pandey et al., 2008), leaves in rheumatism and applied locally in snake bites (Kirtikar et al., 2005). The plant is used traditionally as an antipyretic and insecticide (Abdul...
Mannan et al., 2010). Flowers used in nasal disorders (Abdul Mannan et al., 2010). Leaves and stems used as oral antihypoglycemic (Parameshwar et al., 2010). The main objective of this study was to assess the hepatoprotective effect of Leucas aspera in simvastatin induced hepatotoxicity.

**Materials and Methods**

**Plant collection and identification**

The basic plant material of Leucas aspera Spreng used in this investigation, was obtained from Sri Venkateshwara University, Tirupati, Andhra Pradesh. The plants were identified and authenticated by the taxonomists, Department of Botany, Sri Venkateshwara University, Tirupati, Andhra Pradesh, India.

**Preparation of ethanolic extract**

The leaves were collected and shadow dried. The shade leaves were subjected to pulverization to get coarse powder. The coarsely powder leaves of Leucas aspera were used for extraction. The shade dry coarsely powder leaves of Leucas aspera were used for extraction with ethanol. Leucas aspera leaf powder (250 g) was loosely packed in the thimble of Soxhlet apparatus and extracted with ethanol at 55°C for 18 h. The extract was air dried at 25-30°C and weighed. For oral administration, extract was dissolved in 10 ml Phosphate Buffered Saline (PBS) at different concentrations. To make the extract soluble in PBS, 1% Tween 80 was used.

**Phytochemical investigation**

The ethanolic extracts of Leucas aspera were subjected to preliminary chemical screening for their presence or absence of active phytochemical constituents by the following methods (Trease et al., 2002; Kokate et al., 1990 and Khandelwal, 2006).

**Experimental animals**

Wistar albino rats (150-200 g) of both sexes were obtained from the animal house of Nizam Institute of Pharmacy and Research Centre, Deshmukhi, Pochampally, Ramoji Film City, Hyderabad. Before and during the experiment, rats were fed with standard diet (Gold Moher, Lipton India Ltd). After randomization into various groups and before initiation of experiment, the rats were acclimatized for a period of 7 days under standard environmental conditions of temperature, relative humidity, and dark/light cycle. Animals described as fasting were deprived of food and water for 16 hours ad libitum. All animal experiments were carried out in accordance with the guidelines of CPCSEA and study was approved by the IAEC (Institutional Animal Ethical Committee).

**Acute toxicity study**

Leucas aspera in the dose of 2000 mg/kg were administered orally to different group of mice comprising of ten mice in each group. Mortality was observed after 72 hours. Acute toxicity was determined according to the method of Litchfield and Wilcoxon (1949).

**Experimental design for hepatoprotective activity**

(Vaghasiya et al., 2009)

Animals are divided into 5 groups, each group comprising of 6 rats.

- **Group I**: Control group
- **Group II**: Simvastatin treated group (20 mg/kg, p.o)
- **Group III**: Simvastatin (20 mg/kg, p.o) + Leucas aspera leaf extract (200mg/kg, p.o)
- **Group IV**: Simvastatin (20 mg/kg, p.o) + Leucas aspera leaf extract (400mg/kg, p.o)
- **Group V**: Simvastatin (20 mg/kg, p.o) + Silymarin (20mg/kg, p.o)

Group I: rats received a normal standard diet for 24 days; Group II: rats received SMT (20 mg/kg p.o for 30 days), Group III: rats received SMT along with Leucas aspera leaf extract (200mg/kg, p.o for 30 days); Group IV: rats received SMT along with Leucas aspera leaf extract (400mg/kg, p.o for 30 days); Group V: rats received SMT along with silymarin (20mg/kg, p.o for 30 days). However, On the 31st day, all the animals were sacrificed by mild ether anaesthesia.

**Blood biochemistry**

Blood samples were collected in glass tube from retro orbital puncture to obtain haemolysis free clear serum for the analysis of SGOT and SGPT (Reitman and Frankel, 1957), ALP (Walter and Schutt, 1974), Bilirubin (Malloy and Evelyn, 1937) and total protein (Lowry et al., 1951) by a standard method and the samples were sent to AG Labs, Hyderabad for the analysis of various parameters.

**Histopathology**

Histopathology of liver was carried out by a modified Luna (Luna, 1999). In brief, the autopsied livers were washed in normal saline and fixed in 10% formalin for 2 days, followed with bovine solution for 6 h. Then the livers were paraffin embedded and 5 μ thickness microtone sections were made (Krajian, 1963). The sections were processed in alcohol-xylene series and stained with haematoxylin and eosin. The slides were studied under a light microscope for any histological damage/protection.

**Statistical analysis**

The data obtained were analyzed by one-way-analysis of variance (ANOVA), followed by Tukey’s multiple comparison test, using Graph pad prism software. p-value <0.05 was taken as the criterion of significance.
Results

Acute toxicity of *Leucas aspera* in the dose of 2000mg/kg were administered orally, shows no signs of toxicity up to 2000mg/kg. The phytochemical screening of *Leucas aspera* shows the presence of alkaloids, carbohydrates, steroids, tannins, flavonoids and glycosides. The effect of ethanol extract of *Leucas aspera* on SGOT, SGPT, alkaline phosphates, bilirubin and total protein level in simvastatin (20mg/kg.p.o) in intoxicated rats are summarized in Table 1. There was a significant increase in bilirubin level, SGOT, SGPT and ALP, in simvastatin (20mg/kg.p.o) treated group (Group II), compared to the normal control group. The total protein levels were significantly decreased to 5.4 g/dl in simvastatin (20mg/kg.p.o) treated rats from the level of 7.1 g/dl in normal group. On the other hand, the group which received both *Leucas aspera* extract 200mg/kg and simvastatin (20mg/kg.p.o) (Group III), *Leucas aspera* extract 400mg/kg and simvastatin (20mg/kg.p.o) (Group IV) and simvastatin (20mg/kg.p.o) + silymarin (20mg/kg.p.o) (Group V) showed significantly decreased the elevated serum marker enzymes when given orally and reversed the altered total protein to almost normal level (Table 1).

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>SGOT(U/L)</th>
<th>SGPT(U/L)</th>
<th>ALP(U/L)</th>
<th>Bilirubin (mg/dl)</th>
<th>Total protein (mg/dl)</th>
<th>Albumin (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>24±1.50</td>
<td>50±1.21</td>
<td>120±1.50</td>
<td>0.18±0.42</td>
<td>7.6±0.30</td>
<td>3.7±0.23</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>155±16.77</td>
<td>84±10.5</td>
<td>210±11.5</td>
<td>0.4±0.24</td>
<td>5.6±0.37</td>
<td>2.8±0.48</td>
</tr>
<tr>
<td>Simvastatin + E. 200mg</td>
<td>94±2.66*</td>
<td>74±2.21*</td>
<td>180±1.21*</td>
<td>0.32±0.33*</td>
<td>7.1±0.21*</td>
<td>3.0±0.36</td>
</tr>
<tr>
<td>Simvastatin + E.400mg</td>
<td>68±2.25**</td>
<td>65±1.11**</td>
<td>135±2.21**</td>
<td>0.24±0.27**</td>
<td>7.9±0.37***</td>
<td>3.4±0.52*</td>
</tr>
<tr>
<td>Simvastatin + Silymarin</td>
<td>36±2.12***</td>
<td>52±2.32***</td>
<td>130±4.21***</td>
<td>0.20±0.12***</td>
<td>7.8±0.28**</td>
<td>3.6±0.71**</td>
</tr>
</tbody>
</table>

Values are Mean ± SE (n=6), followed by Tukey’s multiple comparison test where, * represents significant at <0.05, ** represents highly significant at p< 0.01, and *** represents very significant at p<0.001. All values are compared with toxicant.

Figure 1: Section of liver of control group

Figure 2: Section of the liver of simvastatin treated group

Figure 3: Section of liver of simvastatin and extract(200mg/kg) treated group
Discussion

The protective effect of *Leucas aspera* Spreng indicates a reduction in enzymes, present in the extra cellular milieu of the liver cell. The medicinal herbs alone or in combination can influence a restoration of the cellular functions and structural integrity of the liver.

The liver can be injured by many chemicals and drugs. In the present study, simvastatin was selected as a hepatotoxicant to induce liver damage, since it is clinically relevant. Simvastatin produces a constellation of dose related deleterious effects in the liver (Leo and Arai, 1982). During hepatic damage, cellular enzyme like SGOT, SGPT, ALP and serum bilirubin present in the liver cell, leak into the serum resulting to increase in concentration (Deb, 1998). Histological changes such as steatosis (fatty changes in hepatocytes) and perivenular fibrosis were observed in simvastatin control group. All the histological changes observed were in correlation with the biochemical and functional parameters of the liver. These medicinal herbs alone or in combination can influence a restoration of the cellular functions and structural integrity of the liver.

In previous studies, reported that simvastatin caused oxidative stress mediated hepatotoxicity. *Leucas aspera* followed by simvastatin significantly reduced SGPT, ALP and serum bilirubin as compared with simvastatin-treated animals. The protection of liver cells against toxic materials including drugs, lipid peroxidation, and free radical injury may decrease inflammation. Phenols and tannins of *Leucas aspera*, present in high amounts, possess antioxidative which protects liver from free radical injury (Ai Lan Chewa et al., 2012). Furthermore, the antioxidative property of *Leucas aspera* crude extracts on free radical mediated DNA damage increases the hepatoprotective effect of *Leucas aspera* (Abdul Mannan et al., 2010 and Parmeshwar et al., 2010). In addition, the anti-inflammatory, (Kirtikar et al., 2005) and antibacterial activity (Ai Lan Chewa et al., 2012) of *Leucas aspera* shows protective effect on simvastatin induced hepatotoxicity.

Conclusion

In conclusion, the results of the present study indicate the hepatoprotective activity of *Leucas aspera* Spreng against simvastatin induced hepatotoxicity. Thus, on the basis of the phytochemical, physical, biochemical and histopathological concluded that the *Leucas aspera* possesses significant hepatoprotective activity. The study suggests a protective role of *Leucas aspera* in drug-induced hepatotoxicity and this effect may be due to its antioxidative effects.

Acknowledgements

I sincerely thank to my Principal, Nizam Institute of Pharmacy and Research Centre, Deshmukhi, Pochampally, Near Ramoji Film City, Nalgonda-508284, A.P., India for rendering his suggestions and helping me in each and every step of completion of this research work successfully.

Reference


