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Abstract

The importance and role of phytochemicals in promoting good health by its antioxidant effect
is well documented. The aim of this work was to investigate the effect of three defined polyphenols
such as quercetin, naringenin and EGCG on vasotonic response induced by activation of serotonin
and histamine receptor in pulmonary artery of C. hircus (PA of Ch). The arterial rings prepared
from secondary branch of pulmonary artery of C. hircus was mounted in automatic organ bath.
Isometric contraction induced by 5HT and histamine (1nM-100µM) under normoxic or hypoxic
conditions was recorded in absence or presence of quercetin, naringenin and EGCG. The maximum
contractile response (Emax) induced by 5HT and histamine in normoxic rings was almost reduced
by more than 50% in hypoxic one. The Emax obtained from 5HT induced contractile response
curve was greater than histamine in both normoxic and hypoxic rings. The Emax obtained from
5HT-induced contractile response curve in presence of quercetin, naringenin, EGCG was reduced
by 44%, 63%, 38%, in normoxic rings and by 85%, 93%, 89% in hypoxic rings,respectively
Similarly, the Emax obtained from histamine-induced contractile response curve in presence of
quercetin, naringenin, EGCG was reduced by 36%, 51%, 60% in normoxic rings and by 89%, 83%,
84%, respectively in hypoxic rings.  In conclusion, (i) the PA  of Ch is more sensitive to 5HT than
histamine while eliciting contractile response, (ii) the hypoxic state attenuated the 5HT and
histamine receptor activated contractile response, (iii) the relative inhibitory effect of quercetin,
naringenin and EGCG on 5HT and histamine-induced contraction is in the order of naringenin>
quercetin> EGCG and EGCG> naringenic> quercetin, respectively, in normoxic state, (iv) in
hypoxic PA rings the inhibitory effect of quercetin, naringenin and EGCG on 5HT and histamine-
induced contraction were a lmost identical (83-93%). In translating the observation, it is
recommended that quercetin, naringenin and EGCG could be useful in decreasing vascular resistance
of pulmonary artery and thereby controlling the pulmonary hypertension.
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1.  Introduction

Pulmonary arterial hypertension (PAH) is a disease of increase in
pulmonary vascular resistance and remodelling involving
dysfunction of the endothelin, prostacyclin pathway and nitric
oxide pathways, leading to right ventricular failure and premature
death (Boucherat et al. , 2015). The available therapies
(phosphodiesterase type 5 inhibitors, endothelin-1 receptor
antagonists or prostacyclin mimetics) relieve symptoms and slow
the progress of the disease but has no certain cure (Sitbon et al.,
2014). Thus, there is a necessity for novel effective therapeutic
strategies for PAH.
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Ann. Phytomed.,

Quercetin [2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4H-
chromen-4-one], a flavonoid present in onions, apples, peppers,
tomatoes, cruciferous vegetables  including broccoli, cabbage and
sprouts (Hertog et al.,1993) is an antioxidant (Morel et al., 1993),
antimutagenic (Harwood et al., 2007), anti-inflammatory (Rogelio
et al., 2007), leishmanicidal (Marín et al., 2009), antihypertensive
(Duarte et al., 2001; Yamamoto and Oue, 2006) , iron chelator
(Ferrali et al., 1997) and  vasorelaxant (Chen and Pace-Asciak,
1996, Chen et al., 2004). Naringenin [(2S)-5,7-Dihydroxy-2-(4-
hydroxyphenyl)-2,3-dihydro-4H-chromen-4-one], a citrus
flavonoid found in grapefruit, bitter orange and other fruits (Liu et
al., 2016)  has anti-inflammatory (Tsai et al., 2012), antimutagenic
(Shi et al., 2009), antioxidant (Mershiba et al., 2013), anticancerous
(Abaza et al., 2015), antiatherogenic (Lee et al., 2003), vasorelaxant
(Ajay et al., 2003) with vasoactivity (Saponara et al., 2006) and GI
regulator (Yang et al., 2014; Sanders et al., 2014) properties.
Epigallocatechin-3-gallate (EGCG) [(2R,3R)-5,7-Dihydroxy-2-
(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl 3,4,5-
trihydroxybenzoate], a catechin from green tea (Camellia sinensis)
leaves is a poteintial source of  antioxidant (Guo et al., 2005;  Weinreb
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et al., 2004), radical scavenger (Weinreb et al., 2004), metal chelator,
anti-carcinogen (Lambert and Elias, 2010), anti-apoptotic (Nie et
al., 2002) and anti-inflammatory (Singh et al., 2010).

Table 1: 5HT (1nM -100µM) and histamine (1nM -100µM) induced
concentration related contractile response in absence (Emax)
or in presence (EBmax) of quercetin (10 µM), naringenin (10
µM) & EGCG (10 µM)  in normoxic and hypoxic pulmonary
arterial rings of C. hircus

0.20±0.01 ad4.99±0.01 ac0.49±0.04 a5.35±0.04 aHist+ EGCG

0.21±0.004 ac5.13 ±0.06 ad0.60±0.05 a5.29±0.03 a Hist + Nari

0.14±0.01 ac4.62±0.02 ac0.78±0.02 a5.40±0.004 aHist + Quer

0.45±0.05 c4.85±0.01c1.22±0.065.01±0.01Histamine

0.41±0.04 ac5.11±0.002 ac0.83±0.04 a4.66±0.001 a5HT+ EGCG

0.10±0.02 ac4.81±0.003ac0.50±0.03 a5.45±0.02 a5HT + Nari

0.20±0.03 ac3.46±0.50 ad0.76±0.06 a5.64±0.02 a5HT +Quer

0.50±0.004c4.71±0.01c1.34±0.165.77±0.015HT

Emax/EBmax (gm)EC50Emax/EBmax (gm)EC50
treatment 
groups

Hypoxic(H)Normoxic (N)

0.20±0.01 ad4.99±0.01 ac0.49±0.04 a5.35±0.04 aHist+ EGCG

0.21±0.004 ac5.13 ±0.06 ad0.60±0.05 a5.29±0.03 a Hist + Nari

0.14±0.01 ac4.62±0.02 ac0.78±0.02 a5.40±0.004 aHist + Quer

0.45±0.05 c4.85±0.01c1.22±0.065.01±0.01Histamine

0.41±0.04 ac5.11±0.002 ac0.83±0.04 a4.66±0.001 a5HT+ EGCG

0.10±0.02 ac4.81±0.003ac0.50±0.03 a5.45±0.02 a5HT + Nari

0.20±0.03 ac3.46±0.50 ad0.76±0.06 a5.64±0.02 a5HT +Quer

0.50±0.004c4.71±0.01c1.34±0.165.77±0.015HT

Emax/EBmax (gm)EC50Emax/EBmax (gm)EC50
treatment 
groups

Hypoxic(H)Normoxic (N)

a (p<0.001) and b (p<0.05) represent level of significance between
the rows within each column. Data of each row (hypoxic) is
compared with the data of normoxic (control) within corresponding
column. c (p<0.001) and d (p<0.05) represent level of significance
between the sub-columns (N and H) within each row. Data of each
‘H’ column in a particular row is compared with the corresponding
data of ‘N’ column.

The effect of quercetin is partly endothelium-dependent (Ajay et
al., 2003; Khoo et al., 2010) involving nitric oxide in rat isolated
thoracic aorta (Chen and Pace-Asciak, 1996 ; Chan et al., 2000 ;
Ajay et al., 2003) and endothelium-independent in isolated rat
vascular smooth muscle (Duarte et al.,1993); isolated rat thoracic
and abdominal aorta, isolated iliac arteries and mesenteric resistance
vascular bed (Perez-Vizcaino et al.,2002) and a combination of
these actions in rat aorta ring preparations and single tail artery
myocytes (Fusi et al., 2003).

Naringenin has a relaxant effect on vascular smooth muscle of rat
thoracic aorta (Ajay et al., 2003); rat and bovine aorta (Orallo et al.,
2005), rat thoracic aortic rings (Saponara et al., 2006); mouse isolated
stomach (Amira et al., 2008); rat colonic smooth muscle (Yang et
al., 2014); interstitial cells of Cajal from murine small intestine
(Kim & Kim, 2017) and protects diabetic rats (Fallahi et al., 2012).

The vasodilating effects of EGCG rely on eNOS and NO production
in endothelial cells in isolated aortic rings of endothelial NO knockout
mice (Lorenz et al., 2015), rat aorta (Alvarez et al., 2006); improve
cardiovascular and metabolic function in spontaneously
hypertensive rats (Potenza et al., 2007) ; porcine coronary artery
rings (Auger et al., 2010), rat thoracic aorta (Aggio et al., 2013);
mesenteric vascular beds from WKY rats (Kim et al., 2007);
endothelial cells of bovine (Lorenz et al., 2004). The chemical
structure and natural source of quercetin, naringenin and EGCG is
given in (Figures 1A, 1B and 1C), respectively.

Considering hypoxia as the major reason of pulmonary arterial
hypertension in man and animal, the present study investigates the
effect of hypoxia on vasotonic response to 5HT and histamine in
pulmonary artery of goat (C. hircus ) (PA of Ch) in absence and
presence of quercetin, naringenin and EGCG. The experimental

protocol would answer the questions like: (i) how does PA of Ch
responds to contraction induced by  5HT and histamine, (ii) whether
quercetin, naringenin and EGCG cause any vasodilatory effect in
these serotonergic and histaminergic  receptor-activated contraction,
(iii) whether goat pulmonary artery could be employed as model
for study for vasorelaxation under hypoxia and (iv) Lastly, if these
polyphenols would be useful in  ameliorating the altered
vasoreactivity of PA of Ch under hypoxia or not.

Figure 1A: Chemical structure of quercetin and natural sources-
onions, apples, tomatoes, cruciferous vegetables.

Figure 1B: Chemical structure of naringenin and natural sources-
grapes, orange

Figure 1C : Chemical structure of ECGC and natural source- green
tea.

2.  Materials and Methods

The whole lungs containing branches of pulmonary artery obtained
from freshly slaughtered goat of local abattoir was transferred in
ice cold Modified Krebs-Henseleit Solution (MKHS) to the
laboratory. The arteries were cleared of connective tissues, fascia
then cut into segments of circular rings measuring 1.5-2 mm in
length and employed for isometric contraction studies. Freshly
prepared arterial rings were mounted with the isometric force
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transducer (MLT 0201) positioned on a micro-positioner (Panlab
S.I., Spain). Then the arterial rings were equilibrated in MKHS under
a resting tension of 1.0 g for a period of 60 min with washing at 15
min interval with MKHS maintained at pH of 7.2-7.4. Following the
equilibration period, the vasocontractility was elicited by exposing
the arterial rings to ligands. The secondary branch of isolated
pulmonary artery of C. hircus was mounted in a four chambered
automatic organ bath and exposed to vasotonic agent like 5HT (10
nM-100 µM) and histamine (10 nM-100 µM) in presence of
polyphenols like quercetin (10 µM), naringenin (10 µM)  and EGCG
(10 µM) under normoxic and hypoxic conditions. Separate sets of
experiments were conducted for different treatment and control
groups. The isometric contraction was recorded by personal
computer with the help of Lab chart 7 pro software (AD Instrument
software, Australia). The tissue holder along with arterial ring was
placed in vessel containing 20 ml of MKHS (pH 7.2-7.4) maintained
at (37.0±0.50C) and bubbled with carbogen (95% O2 +5% CO2) as
normoxic condition and with nominal oxygen (1% O2 + 4% CO2 +
95% N2) simulating hypoxic condition for the hypoxia model. The
isometric contraction was recorded by PC with the help of Lab
chart 7 pro software (AD Instrument software, Australia). All the
experiments were carried after approval from IAEC, C.V.Sc and AH
(Regd No.433CPCSEA/CVS/2007)

2.1 Statistical analysis

All values are expressed as mean ± Standard error of mean (SEM) of
measurements in ‘n’ experiments. The net contraction was expressed
as mean gm. The data was compared using unpaired student’s ‘t’
test using GraphPad Software Quick Calcs. The mean-logEC50 and
maximal contraction (Emax) was calculated using Graph-Pad Prism
5 software (GraphPad Prism5, GraphPad Software Inc., San Diego,
CA, U.S.A). A ‘p’ value < 0.05 and p < 0.001 was considered
statistically significant.

3.  Results

Effect of quercetin (10 µM), naringenin (10 µM) and EGCG (10 µM)
on 5HT (1 nM -100 µM) concentration related contractile response
elicited in normoxic and hypoxic pulmonary arterial rings.

5HT- induced CRC response curve elicited in presence of quercetin
(10 µM) was shifted to right with significant (p < 0.001) decrease in
EC50 and EBmax (5.64 ± 0.02 and 0.76 ± 0.06 g, n = 6) in normoxic
condition as compared non-treated normoxic control (EC50 5.77 ±
0.01, Emax 1.34 ± 0.16 g, n = 6). Similarly, in presence of quercetin
5HT-induced CRC response curve was shifted to right with
significant (p < 0.05, p < 0.001) decrease in EC50   and EBmax (3.46 ±
0.5, 0.2 ± 0.03 g, n = 6) in hypoxic rings as compared to that of EC50

and EBmax of treated normoxic group (Figures 2A, B, C).

In presence of naringenin (10 µM), 5HT-induced CRC response
curve was shifted to right with significant (p < 0.001) decrease in
EC50 and EBmax (5.45 ± 0.02 0.5 ± 0.03 g, n = 6) in normoxic condition
as compared to non-treated normoxic control (EC50 5.77 ± 0.01,
Emax 1.34 ± 0.16 g, n = 6).  Similarly, 5HT-induced CRC response
curve elicited in presence of naringenin was shifted to right with
significant (p < 0.001) decrease in EC50 and EBmax(4.81 ± 0.003 µM,
0.10 ± 0.02 g, n = 6) in hypoxic rings in comparison with that of
EC50 and EBmax of treated normoxic group (Figures 3A, B, C).

CRC response curve elicited by 5HT in presence of EGCG (10 µM)
was shifted to right with significant (p < 0.001) decrease in EC50

and EBmax (4.66 ± 0.001 µM, 0.83 ± 0.04 g, n = 6) in normoxic
condition as compared to non-treated normoxic control (EC50 5.77
± 0.01, Emax 1.34 ± 0.16 g, n = 6). Similarly, 5HT induced CRC
response curve elicited in presence of EGCG was shifted to right
with significant (p < 0.001) increase in (EC50 5.11 ± 0.002 µM) and
significant (p < 0.001) decrease in (Emax 0.41 ± 0.04 g, n = 6) in
hypoxic rings in comparison with that of EC50 and EBmax of treated
normoxic group (Figures, 4 A, B, C).
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Figure 2: Representative raw trace showing effect of 5HT (1 nM-100 µM) induced concentration related contractile response in presence of
quercetin(10 µM) in normoxic and hypoxic rings.

Figure 2C: 5HT (1nM-100 µM) induced concentration related contractile response in absence (Emax) or in presence (EBmax) of  quercetin in
normoxic and hypoxic pulmonary arterial rings of C. hircus.
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Figure 3:Representative raw trace showing effect of 5HT (1 nM-100 µM) induced concentration related contractile response in presence of
naringenin (10 µM) in normoxic and hypoxic rings.

Figure 3C: 5HT (1 nM-100 µM) induced concentration related con-tractile response in absence (Emax) or in presence (EBmax) of naringenin in
normoxic and hypoxic pulmonary arterial rings of C. hircus.
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Figure 4: Representative raw trace showing effect of 5HT (1 nM-100 µM) induced concentration related contractile response in presence of
EGCG (10 µM) in normoxic and hypoxic rings.

Figure 4C: 5HT (1nM-100 µM) induced concentration related contractile response in absence (Emax) or in presence (EBmax) of EGCG in normoxic
and hypoxic pulmonary arterial rings of C. hircus.
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Figure 5: Representative raw trace showing effect of histamine (1nM-100 µM) induced concentration related contractile response in presence
of quercetin(10 µM) in normoxic and hypoxic rings.

Figure 5C: Histamine (1nM-100 µM) induced concentration related contractile response in absence (Emax) or in presence (EBmax) of quercetin
in Normoxic and Hypoxic pulmonary arterial rings of C. hircus.
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Figure 6: Representative raw trace showing effect of histamine (1 nM-100 µM) induced concentration related contractile response in presence
of  naringenin (10 µM) in normoxic and hypoxic rings.

Figure 6C: Histamine (1nM-100 µM) induced concentration related contractile response in absence (Emax) or in presence (EBmax) of naringenin
in normoxic and hypoxic pulmonary arterial rings of C. hircus.
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Figure 7: Representative raw trace showing effect of histamine (1nM-100 µM) induced concentration related contractile response in
presence of EGCG (10 µM) in normoxic and hypoxic rings

Figure 7C: Histamine (1 nM-100 µM) induced concentration related contractile response in absence (Emax) or in presence (EBmax) of EGCG
in normoxic and hypoxic pulmonary arterial rings of C. hircus.

Effect of quercetin (10 µM), naringenin (10 µM) and EGCG (10 µM)
on histamine (1 nM-100 µM) concentration related contractile
response elicited in normoxic and hypoxic pulmonary arterial rings.

Histamine-induced CRC response curve elicited in presence of
quercetin (10 µM) was shifted to right with significant (p < 0.001)
increase in EC50 (5.40 ± 0.004 µM) and with significant (p < 0.001)
decrease in EBmax(0.78 ± 0.02 gms, n = 6) in normoxic condition as
compared to nontreated normoxic control (EC50 5.01 ± 0.01 µM,
Emax 1.22 ± 0.06 g; n = 6).  Similarly, histamine induced CRC response
curve elicited in presence of quercetin was shifted to right with
significant (p < 0.001) decrease in (EC50 4.62 ± 0.02 µM, Emax 0.14
± 0.01 g, n = 6) in hypoxic rings in comparison with that of EC50

and EBmax normoxic group (Figures 5A, B, C).

In presence of naringenin (10 µM), histamine induced CRC response
curve was shifted to right with significant (p < 0.001) increase in
EC50 (5.29 ± 0.03 µM) and with significant (p < 0.001) decrease in
EBmax (0.60 ± 0.05 g, n = 6), in normoxic condition as compared to
non-treated normoxic control (EC50 5.01 ± 0.01 µM, Emax 1. 22 ±
0.06 g; n = 6).   Similarly, histamine induced CRC response curve
elicited in presence of naringenin was shifted to right with significant
(p < 0.05) decrease in (EC50 5.13 ± 0.06 µM) with significant (p <
0.001) decrease in (Emax 0.21 ± 0.004 g, n = 6) in hypoxic rings in
comparison with that of EC50 and EBmax normoxic group (Figures
6A, B, C).
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CRC response curve induced by histamine in presence of EGCG (10
µM) was shifted to right with significant (p < 0.001) increase in
EC50 (5.35 ± 0.04 µM) and with significant (p < 0.001) decrease in
EBmax (0.49 ± 0.04 g, n = 6) in normoxic condition as compared to
nontreated normoxic control (EC50 5.01 ± 0.01 µM, Emax 1.22 ± 0.06
g; n = 6). Similarly, histamine induced CRC response curve elicited
in presence of EGCG was shifted to right with significant (p <
0.001) decrease in (EC50 4.99 ± 0.01 µM, Emax 0.20 ± 0.01g) in
hypoxic rings in comparison with that of EC50 and EBmax of   normoxic
group (Figures 7A, B, C).

4.  Discussion

The major observations are: (i) contractile response to 5-HT is
greater than that of histamine, suggesting that this artery is more
sensitive to serotonergic than histaminergic receptor. This further
demonstrated that PA of Ch could be a good vascular model for
evaluation of drugs acting on pulmonary artery, (ii) 5HT and
histamine-induced vasotonic response were reduced by about 60%
with experimental induction of acute hypoxia, (iii) a greater
vasorelaxation effect was observed in 5HT-precontracted normoxic
and hypoxic rings with naringenin, in histamine-precontracted in
normoxic ring with EGCG and in histamine-precontracted hypoxic
ring with quercetin indicating that all three polyphenols have
potentials to control  increased pulmonary vascular resistance in
normoxic and hypoxic conditions.

In order to explain the effect of different polyphenols (quercetin,
naringenin, EGCG) on vasotonic responses, 5HT concentration
related contractile response was elicited either in absence or presence
of quercetin or naringenin or EGCG in normoxic and hypoxic PA of
Ch. In the present study, it was observed that quercetin reduced
the 5HT induced maximal response by 44% without altering the
affinity suggesting that quercetin caused inhibition of 5HT- induced
vasotonic effect, either by modulating 5HT receptor mediated
signalling mechanism as in cultured coronary arteries (Deng et al.
2014); in pulmonary artery smooth muscle cells (Liu et al., 2007)
or activating vasorelaxation mechanism of endothelial /non-
endothelial cells as in bovine aortic endothelial cell cultures
(Mcduffie et al., 1999) or interfering the Ca+2 entry pathways in
arterial tissues like in isolated cerebral and peripheral arteries from
rats (Chang  and Owman 1987) ; in dog saphenous vein  (Sumner et
al., 1992); in bovine pulmonary arteries (Alapati et al., 2007).

In presence of quercetin, 5HT-induced contractile response in
hypoxic pulmonary arterial rings of C. hircus was further attenuated
with decrease in affinity by 2.31 log unit and maximal response by
85%. Our observation, demonstrated that quercetin inhibited the
5HT receptor-mediated contractile response almost identical in
normoxic and hypoxic pulmonary arterial rings. This may be due to
significantly restoration or up-regulation of 5-HT2A receptors and
reduced the Akt and S6 phosphorylation by quercetin (Morales-
Cano et al., 2014). Quercetin could be useful in the treatment of
hypoxia of PAH as treatment with quercetin alone substantially
ameliorated hypoxia induced brain dysfunctions and acts like a
neuroprotectant (Sarkar et al., 2012).

Naringenin caused a clear cut rightward shift of 5HT-contractile
response curve with decrease in affinity by 0.32 and maximal
contraction by 63% in normoxic pulmonary arterial rings. This
observation demonstrated that naringenin inhibited the vasotonic

response of 5HT with significant attenuation of affinity and maximal
contractile responses. Such effect could be due to either interference
of agonist-receptor interaction or inhibition signalling pathways of
5HT receptor activation in mediating contractile response or
activating vasorelaxation pathways via modulation of NO/PGI2/ KATP

channel/ Na+ pump/ Ca+2 inactivation pathways as in the isolated
mouse middle cerebral artery (Ni, 2004); in human, monkey and
dog coronary artery (Toda, 1991).  In hypoxic pulmonary arterial
rings, naringenin inhibited the 5HT induced contraction with decrease
in the affinity by about 1 log unit and maximal response by 93%.
So, hypoxia further poteintiates the inhibitory effect of naringenin
contractile response of 5HT  in PA of Ch . This reduced
vasoconstriction to 5HT observed in hypoxic PA of Ch may be
attributed to the decreased HIF-1 and VEGF expression as in a
murine model of hypobaric hypoxia (Sarkar et al., 2012) and may
be mediated through serotongenic pathway (Dutt-Roy et al., 2015).
The further inhibition of 5HT vasotonic response by naringenin
could be mediated by modulation of signalling cascade or activation
of vasorelaxation pathways which makes it suitable to be used as a
drug in PAH combating hypoxia.

EGCG inhibited the 5HT induced contractile response with decease
in affinity by 1.11 log unit and EBmax by 38% in normoxic and
affinity by 0.66 log unit and maximum response by 69% in hypoxic
PA of Ch. EGCG retains ability to reverse partially the affinity of
5HT  receptor as modulated by hypoxia. It does not further
poteintiate the inhibitory effects on 5HT contraction as in case of
quercetin and naringenin, implying that EGCG possesses possible
vasoprotective potential as EGCG preserves endothelial functions
by reducing the endogenous nitric oxide synthase inhibitor level
(Tang et al., 2006) and can extend help as a protective measure for
PAH against hypoxia.

Concisely, the percentage of inhibition of serotonergic receptor-
induced vasototonic response mediated by quercetin, naringenin
and EGCG is greater in hypoxic than normoxic tissues. Our
observations clearly demonstrated that polyphenols exhibited
significant inhibitory effect on 5HT induced vasotonic response in
pulmonary arterial rings of C. hircus in the increasing order of
vasorelaxation potency, i.e., naringenin > quercetin > EGCG in
normoxic and hypoxic condition.

Histamine induced a concentration related contractile response in
both normoxic and hypoxic pulmonary arterial rings of C. hircus.
Concentration related curve of histamine was significantly shifted
to right, decreased on affinity by 0.16 in hypoxic rings. As observed
with 5HT, there was an identical inhibition of histamine contraction
in pulmonary arterial rings of C. hircus under hypoxic condition. It
could be predicted that hypoxia caused a downregulation and/or
reduced function of histamine receptor that resulted in attenuation
of function or expression of signalling molecules participated in
histamine receptor coupling pathways as  H2 receptor is coupled to
both adenylyl cyclase and phospholipase C through Gs and Gq

proteins respectively (Delvalle and Gantz, 1997; Hill et al.,1997;
Leurs et al., 1994) and  then  histamine initiates two pathways
which result in either an increased intracellular cyclic AMP or Ca2+
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level (Fukushima et al., 1996; Kuhn et al.,1996; Wang et al., 1996)
and histamine receptor activation leads to receptor desensitization
(Smit et al., 1994).

Quercetin caused an inhibition of vasoconstriction of histamine
reducing EC50 by -0.39 log unit and maximum relaxation by 36% in
nomoxic rings. The maximal contractile response of histamine was
augmented to 89% in hypoxic rings with 0.23 log unit reduction in
affinity. This result demonstrated that quercetin exhibited a greater
inhibitory effect in histamine mediated vasotonic response in
hypoxic PA of Ch than normoxic ones as quercetin increases NO
bioavailability in endothelial cells, plays a role in the vascular
protective effects associated with improved endothelial cell function
by inducing vasorelaxation through an eNOS phosphorylation
process blocked by an increase in catalase activity, Ca2+ mediated
eNOS dependent and independent pathways (Khoo et al., 2010) by
which quercetin reduces inflammation and cerebral edema associated
with altitude diseases without the side effects of steroid therapy
(Patir et al. 2012) and is used as antioxidants used in the altitude
sickness (Sarkar et al., 2012) in rats and thus paves way to be used
against hypoxia in PAH.

Naringenin inhibited histamine induced contractile response with
51% and 83% attenuation of maximal contractile response with
increase in affinity of histamine receptor in normoxic and hypoxic
pulmonary arterial rings of C. hircus, respectively. This may be
due to the mechanism involving the inhibition of formation and
release of endogenous histamine in the gastric mucosa of rats is
implicated in the protective effect of naringenin (Parmar, 1984).
Also, grapefruit juice increases the bioavailability of H1
antihistamines through their interaction in the intestines (Bartra, et
al., 2006) as inhibits CYP3A4 by the active metabolite naringenin
(Criado et al., 2010) and strongly inhibits histamine release from
rat mast cells to suppress allergic reaction through the inhibition of
histamine release and is known as a histidine decarboxylase inhibitor
(Yamamoto et al., 2014) which can also thus help to ameliorate
PAH combating hypoxia.

ECCG also inhibited the histamine contraction with 60% and 84%
attenuation of maximal contractile response with increase in affinity
of histamine receptor in normoxic and hypoxic PA of Ch, respectively.
This finding clearly demonstrates that vasocontration to histamine
in PA of Ch is reduced  in both normoxic and hypoxic conditions as
the bioactive compound epigallocatechin-3-gallate (EGCG) targets
histamine-producing cells producing great alterations in their
behavior, proliferative potential, adhesion, migration, invasion
potentials, as a potent inhibitor of the histamine-producing enzyme,
histidine decarboxylase thus extends potent anti-inflammatory,
antitumoral, and antiangiogenic effects (Melgarejo et al., 2010) and
can be helpful in improving blood circulation of hypoxic blood
vessels in PAH.

The vasorelaxation of quercetin, naringenin and EGCG in histamine-
precontracted rings is more in hypoxic than normoxic rings.  Our
observations clearly demonstrated that polyphenols exhibited
significant inhibitory effects on histamine induced vasotonic
response in pulmonary arterial rings of C. hircus in the order of
potency, i.e., EGCG> naringenin>quercetin in normoxic and quercetin
>EGCG> naringenin in hypoxic condition.

5.  Conclusion

PA of Ch can be used as a vascular prototype model to evaluate the
mechanisms of vasoreactivity of different drugs and nutraceuticals
in addition to the rodent model. While comparing the vasotonic
responses of 5HT and histamine in PA of Ch, the PA of Ch shows
more sensitivity to 5HT than histamine which indicates that there
is a greater function and expression of 5HT receptor than histamine
receptor. Hypoxia reduced the 5HT  and histamine-induced
contractile response by 60% that could be probably due to reduced
function and expression or downregulation of these receptors.
Polyphenols like quercetin, naringenin and EGCG exhibited
vasorelaxation in both 5HT  and histamine receptor activated
contraction in both normoxic and hypoxic conditions. It is interesting
to note that it could cause vasorelaxation where the vascular
resistance is severely decreased. Hence, the use of these polyphenols
could be effective in protecting the normal vasoreactivity during
inflammatory damage of PA. In hypoxic PA where the vasotonic
response is greatly diminished, these polyphenols could be used to
improve blood circulation in the lungs.
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